

Name		Per	
------	--	-----	--

Using Prime Factorization to Find GCF & LCM
<u>Prime Factorization</u> : the factorization of a composite number into factors.
<u>Greatest Common Factor</u> : the largest factor 2 or more numbers have in common.
<u>Least Common Multiple</u> : the smallest multiple common to two or more numbers.
Multiple: the product of two whole numbers.
Factor: a number that divides another number without a remainder.
You can use a to find the prime factorization of any composite number.

Let's Review:

Use prime factorization to find the prime factors of each number. Write your answers in <u>expanded form</u>.

12

Great news! You can use Prime Factorization to find LCM (Least Common Multiple) and GCF (Greatest Common Factor).

Venn Diagram:

To find LCM multiply the factors in all three sections of the Venn Diagram $3 \times 2 \times 2 \times 2 \times 2 \times 2 = 96$ The LCM of 12 and 32 is 96

To find GCF multiply the factors in the center of the Venn Diagram $2 \times 2 = 4$ The GCF of 12 and 32 is $\frac{4}{3}$

1. Use prime factorization to find LCM and GCF of 18 and 27:

18

27

GCF: _

LCM:

2. Use prime factorization to find the LCM & GCF of:

21

35

GCF:

LCM:

CHALLENGE:

3. Use prime factorization to find GCF and LCM of 4, 12 and 32:

GCF:		

LCM: _____