What is a Proportion?

State whether or not each pair of ratios forms a proportion.

1. $\frac{6}{12} \stackrel{12}{14}$
2. $\frac{3}{20} \stackrel{2}{=} \frac{2}{10}$
3. $\frac{20}{12} \stackrel{25}{15}$
4. $\frac{27}{6} \xlongequal[?]{?} \frac{36}{8}$
5. $\frac{13}{11} \stackrel{24}{=} \frac{24}{20}$
6. $\frac{3}{4} \stackrel{15}{=} \frac{15}{20}$
7. $\frac{10}{4} \stackrel{45}{=} \frac{40}{20}$
8. $\frac{15}{10} \stackrel{?}{=} \frac{3}{2}$ \qquad 9. $\frac{12}{21} \stackrel{?}{=} \frac{16}{28}$
9. $\frac{3}{24} \stackrel{?}{=} \frac{4}{32}$ \qquad 11. $\frac{12}{20} \stackrel{?}{=} \frac{4}{7}$
10. $\frac{2}{9} \stackrel{5}{=} \frac{5}{22}$
11. $\frac{6}{15} \stackrel{?}{=} \frac{4}{12}$ \qquad 14. $\frac{15}{18} \stackrel{20}{24}$
12. $\frac{17}{12} \stackrel{?}{=} \frac{10}{7}$
13. $\frac{25}{35} \stackrel{?}{=} \frac{15}{21}$ \qquad 17. $\frac{10}{9} \stackrel{16}{14}$
14. $\frac{32}{36} \stackrel{?}{=} \frac{40}{45}$
15. $\frac{2 \mathrm{tsp}}{7 \mathrm{gal}} \stackrel{6 \mathrm{tsp}}{=} \frac{\mathrm{gal}}{21 \mathrm{ga}}$
16. $\frac{12 \mathrm{~cm}}{20 \mathrm{~g}} \stackrel{?}{=} \frac{15 \mathrm{~g}}{25 \mathrm{~cm}}$
17. $\frac{\$ 14}{3 \mathrm{hr}} \stackrel{?}{=} \frac{\$ 84}{18 \mathrm{hr}}$
18. $\frac{27 \mathrm{lb}}{\$ 21} \stackrel{?}{=} \frac{14 \mathrm{lb}}{\$ 18}$ \qquad 23. $\frac{15 \mathrm{sec}}{21 \mathrm{sec}} \stackrel{10 \mathrm{in} .}{15 \mathrm{in} .}$
19. $\frac{6 \mathrm{ft}}{13 \mathrm{gal}} \stackrel{?}{\stackrel{7 \mathrm{ft}}{14 \mathrm{gal}}}$

For Exercises 25-30, choose the proportion that is written correctly.
25. a. $\frac{20 \text { men }}{25 \text { women }}=\frac{5 \text { men }}{4 \text { women }}$
b. $\frac{20 \text { men }}{25 \text { women }}=\frac{4 \text { men }}{5 \text { women }}$
c. $\frac{4 \text { men }}{5 \text { women }}=\frac{25 \text { women }}{20 \text { men }}$
26. a. $\frac{27 \text { acres }}{\$ 15}=\frac{\$ 25}{45 \text { acres }}$
b. $\frac{\$ 27}{15 \text { acres }}=\frac{\$ 25}{45 \text { acres }}$
c. $\frac{45 \text { acres }}{\$ 25}=\frac{27 \text { acres }}{\$ 15}$
27. a. $\frac{12 \text { pies }}{4 \text { cakes }}=\frac{6 \text { cakes }}{18 \text { pies }}$
b. $\frac{4 \text { cakes }}{12 \text { pies }}=\frac{6 \text { cakes }}{18 \text { pies }}$
c. $\frac{12 \text { pies }}{4 \text { cakes }}=\frac{6 \text { pies }}{18 \text { cakes }}$
28. a. $\frac{6 \mathrm{gal}}{15 \mathrm{gal}}=\frac{2 \mathrm{~min}}{5 \mathrm{~min}}$
b. $\frac{5 \mathrm{~min}}{15 \mathrm{gal}}=\frac{6 \mathrm{gal}}{2 \mathrm{~min}}$
c. $\frac{6 \mathrm{gal}}{2 \mathrm{~min}}=\frac{5 \mathrm{gal}}{15 \mathrm{~min}}$
29. a. $\frac{25 \text { chairs }}{5 \text { tables }}=\frac{10 \text { tables }}{2 \text { chairs }}$
b. $\frac{25 \text { chairs }}{5 \text { tables }}=\frac{2 \text { tables }}{10 \text { chairs }}$
c. $\frac{25 \text { chairs }}{5 \text { tables }}=\frac{10 \text { chairs }}{2 \text { tables }}$
30. $\mathrm{a} \cdot \frac{36 \mathrm{lb}}{28 \mathrm{ft}}=\frac{18 \mathrm{lb}}{14 \mathrm{ft}}$
b. $\frac{18 \mathrm{lb}}{14 \mathrm{ft}}=\frac{28 \mathrm{lb}}{36 \mathrm{ft}}$
c $\frac{36 \mathrm{ft}}{28 \mathrm{lb}}=\frac{18 \mathrm{lb}}{14 \mathrm{ft}}$
31. During the butterfly stroke competitions at the 1972 Summer Olympic Games, Mayumi Aoki swam 100 meters in 64 seconds, and Karen Moe swam 200 meters in 136 seconds. Do these rates form a proportion?
32. At Deliah's Hardware, you can buy 5 feet of PVC pipe for $\$ 1.10$, or 8 feet for $\$ 1.76$. Are these prices proportional?

Solving Proportions Using Cross Products

Solve each proportion.

1. $\frac{12}{a}=\frac{16}{20}$
2. $\frac{2}{8}=\frac{t}{20}$
3. $\frac{30}{a}=\frac{20}{18}$
4. $\frac{45}{x}=\frac{18}{8}$
$a=$ \qquad $t=$ \qquad

$$
a=
$$

\qquad
$x=$ \qquad
5. $\frac{u}{5}=\frac{6}{3}$
$u=$ \qquad
6. $\frac{15}{5}=\frac{6}{a}$
7. $\frac{m}{8}=\frac{12}{16}$
8. $\frac{40}{y}=\frac{16}{2}$

$$
a=
$$

\qquad

$$
m=
$$

\qquad

$$
y=
$$

\qquad
9. $\frac{16}{36}=\frac{g}{45}$
10. $\frac{s}{28}=\frac{30}{21}$
11. $\frac{4}{5}=\frac{8}{d}$

$$
d=
$$

\qquad
12. $\frac{15}{5}=\frac{12}{c}$
$g=$ \qquad $s=$ \qquad
15. $\frac{30}{3}=\frac{j}{2}$
$c=$ \qquad
13. $\frac{16}{28}=\frac{h}{7}$
14. $\frac{2}{k}=\frac{3}{6}$
16. $\frac{3}{r}=\frac{2}{8}$
$h=$ \qquad

$$
k=
$$

\qquad
$j=$ \qquad
17. $\frac{20}{8}=\frac{f}{2}$
18. $\frac{2}{20}=\frac{z}{10}$
19. $\frac{20}{d}=\frac{4}{5}$
$r=$ \qquad
20. $\frac{4}{q}=\frac{2}{7}$

$$
d=
$$

\qquad
21. $\frac{z}{15}=\frac{2}{6}$
22. $\frac{2}{3}=\frac{b}{6}$
$b=$ \qquad
23. $\frac{y}{2}=\frac{6}{4}$

$$
y=
$$

\qquad
25. $\frac{10}{m}=\frac{8}{4}$
26. $\frac{27}{6}=\frac{j}{8}$
27. $\frac{g}{3.5}=\frac{1.6}{1.4}$
28. $\frac{8}{36}=\frac{p}{9}$
$m=$ \qquad
$j=$ \qquad
30. $\frac{t}{24}=\frac{10}{16}$
$t=$ \qquad
$g=$ \qquad
24. $\frac{2}{5}=\frac{4}{n}$
$n=$ \qquad
29. $\frac{14}{16}=\frac{28}{p}$
31. $\frac{45}{u}=\frac{27}{12}$
$u=$ \qquad
33. $\frac{25}{q}=\frac{15}{12}$
34. $\frac{15}{20}=\frac{v}{4}$
$v=$ \qquad
35. $\frac{p}{6}=\frac{3}{2}$
$p=$ \qquad
32. $\frac{10}{45}=\frac{2}{x}$
$x=$ \qquad
36. $\frac{3}{7}=\frac{12}{a}$
$a=$ \qquad
37. Measurement If 5 pints of water weigh 80 oz , find the weight of 12 pints of water.
38. In 1967, a minimum wage worker would receive $\$ 84$ for 60 hours of work. How much would the worker receive for 75 hours of work?

Solving Proportions

Using Unit Rates

Find the unit rate for each.

1. $\frac{12 \text { books }}{3 \text { shelves }}$
2. $\frac{14 \mathrm{tsp}}{7 \mathrm{gal}}$
3. $\frac{108 \text { pages }}{9 \text { hours }}$
4. $\frac{6 \mathrm{gal}}{2 \mathrm{~min}}$
5. $\frac{30.48 \mathrm{~cm}}{12 \mathrm{in} .}$
6. $\frac{40 \text { mice }}{8 \text { rats }}$
7. $\frac{28 \text { cats }}{4 \text { dogs }}$
8. $\frac{\$ 315}{35 \mathrm{hr}}$
9. $\frac{10 \mathrm{CDs}}{5 \text { tapes }}$
10. $\frac{90 \text { cars }}{15 \text { trucks }}$
11. $\frac{14 \text { cups }}{42 \mathrm{sec}}$
12. $\frac{18 \text { boys }}{18 \text { girls }}$
13. $\frac{576 \mathrm{pt}}{72 \mathrm{gal}}$
14. $\frac{120 \mathrm{mi}}{3 \mathrm{hr}}$ \qquad 15. $\frac{35 \text { carrots }}{10 \text { potatoes }}$
15. $\frac{36 \text { cups }}{18 \text { bowls }}$
16. $\frac{68 \text { men }}{17 \text { women }}$
17. $\frac{375 \mathrm{ft}^{2}}{25 \text { people }}$

Solve each proportion using unit rates.
19. $\overline{20 \text { moose }}=\frac{14 \text { cows }}{10 \text { moose }}$
20. $\frac{25 \mathrm{pt}}{10 \mathrm{ft}^{2}}=\frac{}{8 \mathrm{ft}^{2}}$
21. $\frac{7 \text { hits }}{2 \text { innings }}=\overline{6 \text { innings }}$
22. $\frac{4 \mathrm{ft}}{12 \mathrm{sec}}=\frac{}{6 \mathrm{sec}}$
23. $\frac{\$ 15}{9 \mathrm{lb}}=\frac{}{3 \mathrm{lb}}$
24. $\frac{15 \text { meals }}{3 \text { days }}=\frac{}{5 \text { days }}$
25. $\frac{5 \text { drops }}{50 \mathrm{gal}}=\frac{}{30 \mathrm{gal}}$
26. $\overline{2 \mathrm{hr}}=\frac{15^{\circ}}{3 \mathrm{hr}}$
27. $\frac{}{4 \mathrm{hr}}=\frac{16 \mathrm{gal}}{2 \mathrm{hr}}$
28. $\frac{45 \mathrm{in} .}{5 \mathrm{lb}}=\frac{}{2 \mathrm{lb}}$
29. $\frac{12 \mathrm{lb}}{4 \mathrm{sec}}=\frac{}{1 \mathrm{sec}}$
30. $\frac{\$ 6}{2 \mathrm{hr}}=\frac{}{3 \mathrm{hr}}$
31. $\frac{35 \mathrm{mi}}{10 \mathrm{~L}}=\frac{}{8 \mathrm{~L}}$
32. $\frac{}{4 \mathrm{in}^{3}}=\frac{21 \mathrm{oz}}{6 \mathrm{in}^{3}}$
33. $\frac{27 \mathrm{~min}}{24 \mathrm{ft}}=\frac{}{8 \mathrm{ft}}$
34. In 1909, French workmen removed a white stork's nest weighing 660 kilograms from the top of a cathedral. The nest also weighed 1452 pounds. Using these measurements, find the number of pounds in a kilogram.
35. History The Northrop XB-35 aircraft used in World War II had a wingspan of 172 feet. Melba's model of this aircraft has a wingspan of $21 \frac{1}{2}$ inches. How many feet does one inch of the model represent?
\qquad

Similar Figures

Find the missing side lengths.

1. $A=$ \qquad $B=$ \qquad $C=$ \qquad 2. $A=$ \qquad $B=$ \qquad

2. $A=$ \qquad $B=$ \qquad $C=$ \qquad
3. $A=$ \qquad $B=$ \qquad $C=$ \qquad

4. $A=$ \qquad $B=$ \qquad
5. $A=$ \qquad $B=$ \qquad $C=$ \qquad

6. On the map, 1 inch equais 850 actual miles.
a. What are the actual distances between the cities?

New York to New Orleans
\qquad
New Orleans to Miami
\qquad
Miami to New York

b. Is the triangle shown on the map similar to the life-size triangle? Explain.
8. The lengths of the sides of a triangle are $45 \mathrm{~cm}, 55 \mathrm{~cm}$, and 70 cm . The shortest side of a similar triangle has length 27 cm . What are the lengths of the other two sides of the similar triangle?
\qquad

Section 10B Review

Find the unit rate for each ratio.

1. $\frac{45 \mathrm{~kg}}{15 \mathrm{~m}}$ \qquad 2. $\frac{48 \text { lemons }}{\$ 8}$
\longrightarrow
2. $\frac{105 \mathrm{mi}}{3 \mathrm{hr}}$ \qquad
3. $\frac{108 \text { cows }}{6 \text { acres }}$
4. $\frac{20 \text { windows }}{4 \text { doors }}$
5. $\frac{100 \mathrm{cars}}{25 \mathrm{~min}}$

Solve each proportion.
7. $\frac{15}{}=\frac{3}{10}$
8. $\frac{3}{18}=\frac{2}{2}$
9. $\frac{}{12}=\frac{21}{18}$
10. $\frac{4 \text { dogs }}{9 \text { cats }}=\overline{18 \text { cats }}$
11. $\frac{18 \text { rings }}{\$ 20}=\frac{}{\$ 30}$
12. $\frac{25 \mathrm{gal}}{5 \min }=\frac{}{4 \min }$
13. In 1996, a chocolate chip cookie with an area of 5240 square feet was made by Cookie Time of New Zealand. It contained about 5600 pounds of chocolate. This equals how many pounds of chocolate per square foot of cookie?
14. If Chester can type 75 words in 100 seconds, how many words could he type in 5 minutes?

In each pair of similar figures, find the missing side lengths.
15. $A=$ \qquad $B=$ \qquad $C=$ \qquad 16. $A=$ \qquad
\qquad

