Name \qquad Per \qquad Mrs. Doolan/Math6

2-4 EXPONENTS

Factor - A number that divides another number without remainder Ex: 6 is a factor of 42

Base - A number multiplied by itself the number of times shown by an exponent

Exponent - A raised number telling how many times another number, the base, is being multiplied by itself

Power - An exponent

Squared - Raised to the power of 2 :

$$
\text { EX: } \quad 3^{2}=3 \text { squared }=3 \times 3=9
$$

Cubed - Raised to the power of 3:
EX: $5^{3}=5$ cubed $=5 \times 5 \times 5=125$
EX: $4^{5}=4 \times 4 \times 4 \times 4 \times 4=1024$
**Base $=4$ x 5 Factors of 4
** Numbers with exponents can be written in three different forms:

1) Exponential Notation: to write the base with an exponent attached.

EX: 9^{4}

YOU TRY: Write in exponential form:

1) 3×3
2) 10×10
3) $6 \times 6 \times 6$
4) Expanded Form: to write the multiplication problem out, listing all the factors:

EX: $9 \times 9 \times 9 \times 9$
YOU TRY: Write in expanded form:

1) 2^{3}
2) 7^{2}
3) 20^{4}
4) Standard Form: to write the answer with numbers EX: $16^{3}=16 \times 16 \times 16=4,096$

YOU TRY: Write in standard form:

1) 3^{3}
2) $2 \times 2 \times 2 \times 2$
3) 5^{3}

Directions: Complete the following table. The first two rows have been filled for you to use as a model:

Expanded Notation	Exponential Notation	Standard Notation
2×2	2^{2}	4
5×5	5^{2}	
	3^{4}	
$2 \times 5 \times 5$	6^{3}	
$3 \times 3 \times 3 \times 5$	7^{3}	
$4 \times 4 \times 4$	11^{2}	
	10^{3}	
$2 \times 2 \times 5 \times 7$	12^{3}	

